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Consider a localised time dependant distribution of currents as source.  The total magnetic
field produced by the distribution is the sum of the near zone (or static) field, intermediate zone
(or induction) field and far zone (or radiation) field (see Jackson, section 9.1) :

   Btot(t, r) = Bnear(t, r) + Binter(t, r) + B far(t, r). (equ. 1)

In the case of a rotating magnetic dipole, we have (we are omitting the factor   µ0 /4!  for the sake
of simplicity) :

       Bnear(t, r) = 3
r5 (µµ · r)r – 1

r3 µµ , (equ. 2)

       Binter(t, r) = 3
cr4 (µµ · r)r – 1

cr2 µµ , (equ. 3)

       B far(t, r) = 1
c2r3 (µµ · r)r – 1

c2r µµ "" 1
c2r3 r × (r × µµ ), (equ. 4)

where the dot means a time derivative.  The magnetic moment µµ  is steadily rotating around the
z  axis with an inclination angle #  and angular velocity $ .  Since the fields must be evaluated at
the retarded time, we have (take note that a common constant µ  was factored out) :

        µµ(t, r) = cos!$ t – k (r – R)" sin# x + sin!$ t – k (r – R)" sin# y + cos# z, (equ. 5)

where    k = $ /c  is the wave number and R  is the source radius, assumed to be a uniformly
magnetized rotating sphere.  Although the equations above are sufficient to build the magnetic
field models with Mathematica, it is useful to introduce the following two locally orthogonal
unit vectors :

    u(r) = cos!k (r – R)" x – sin!k (r – R)" y, (equ. 6)

    v(r) = sin!k (r – R)" x + cos!k (r – R)" y. (equ. 7)

Equ. 5 becomes        µµ(t, r) = sin# cos($ t)u + sin# sin($ t)v + cos# z (equ. 8)

and the total magnetic field can now be expressed as follows :

    B(t, r, # ) = F(r) sin# cos($ t) + G(r) sin# sin($ t) + H(r) cos# , (equ. 9)

where :     F(r) = 3
r5 (u · r)r – 1

r3 u + k 3
r4 (v · r)r – 1

r2 v – k2 1
r3 r × (r × u) , (equ. 10)

    G(r) = 3
r5 (v · r)r – 1

r3 v – k 3
r4 (u · r)r – 1

r2 u – k2 1
r3 r × (r × v) , (equ. 11)

   H(r) = 3
r5 (z · r)r – 1

r3 z . (equ. 12)

Notice that the vectors   F(r) ,   G(r) , and   H(r)  don’t form an orthogonal set.  Remarkably, the
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time evolution of the magnetic field is such that all the field lines are globally rotating like a rigid
body around the center   r = 0, despite the fact that there are waves which are radiated away in
this field !  This very surprising result can be proved as follows.  If it's true that the total
magnetic field simply rotates like a rigid body, then the following vectorial equation should be
satisfied, for any point in space :

      B(t, r) = R (z, $ t) B(0, r#) , (equ. 13)

where      R (z, $ t) is a time dependant rotation operator applied to the initial magnetic field
evaluated at the “previous” position :       r# = R – 1(z, $ t) r (inverse rotation applied on the position
vector).  That is, the initial field vector is locally rotated after being parallel transported to
another point.  Equ. 13 is thus an algebraic constraint on the time evolution of the field (rigid
rotation).  Explicitely :

      R (z, $ t) B = B cos($ t) + z × B sin($ t) + z (z · B)!1 – cos($ t)", (equ. 14)

     r# = r cos($ t) – z × r sin($ t) + z (z · r)!1 – cos($ t)". (equ. 15)

Now, in the simpler case of   # = 90° , the field (equ. 9) has the following form :

    B(t, r, 90°) = F(r) cos($ t) + G(r) sin($ t).

It isn't obvious at all that this is a rigid evolution of the field, since the vectors F  and  G  are
complicated expressions (equs. 10 and 11).  However, they do obey the algebraic constraint
equ. 13 :

      F(r) cos($ t) + G(r) sin($ t) " R (z, $ t) F(r#) .

The generalization to an angle   # % 90°  is almost trivial.  It's easy to verify that   H(r)  is invariant
under the rotation (actually, this is the field of the aligned static dipole associated to   # = 0) :

      R (z, $ t) H(r#) " H(r).  So, using the previous result from the case   # = 90° , we get :

     B(t, r) = ! F(r) cos($ t) + G(r) sin($ t)" sin# + H(r) cos#

      " R (z, $ t)! F(r#) sin# + H(r#) cos# ".

This result is physically amazing since there's radiation flowing in the magnetic field, while all
the field lines are rotating like a rigid body !

The time dependance of the magnetic field implies the production of an induced electric field.
Maxwell’s equations in vacuum give

    & × B = 1
c2
'E
't . (equ. 16)

Using equs. 1-4, we find (see also Jackson, section 9.3) :
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    E(t, r) = 1
r3 r × µµ + 1

cr2 r × µµ . (equ. 17)

Equivalently, using equs. 9-12 we find (or we can simply put equ. 8 into equ. 17) :

    E(t, r, # ) = P(r)c sin# cos($ t) + Q(r)c sin# sin($ t) , (equ. 18)

where :     P(r) = k
r3 r × v – k2

r2 r × u, (equ. 19)

    Q(r) = – k
r3 r × u – k2

r2 r × v. (equ. 20)

The induced electric field is also rotating like a rigid body :

      E(t, r) = R (z, $ t) E(0, r#) . (equ. 21)

Since the rotating dipole is emitting electromagnetic waves, it slowly loses energy and angular
momentum.  The angular velocity $  can’t be a true constant, unless there is some external
intervention to maintain the rotation state (falling matter from an accretion disk, for example).
The Poynting vector       (( = E × B , integrated on the surface of a very large sphere (    r ) $ )
centered on the source, gives the total power radiated away by the rotating dipole.  Some
calculus gives (we now reintroduce the factor   µ0µ /4!  which was omitted from the fields) :

       P = (( · dS = µ0µ2

6!c3 $
4 sin2# . (equ. 22)

We can give a rough estimate of the rotation damping, if we assume a spherical body of
rotational energy    E = 1

2 I$ 2  and moment of inertia   I = 2
5 MR2 .  Equating the rate of energy lost

with the radiated power gives
   dE

dt = I$ d$
dt = – µ0µ2

6!c3 $
4 sin2#.

Hence    d$
dt = – a$ 3  and    $(t) = $0

1 + 2a$0
2 t

. (equ. 23)

For a pulsar of radius   R = 10 km, mass M = 1.4 M!, inclination angle   # = 90°  (worst case
scenario), initial rotation period   T0 = 0.001 sec , and equatorial magnetic field strength

   Bsurf % 1010 T , we get    2a$0
2 * 2×10– 5 sec– 1 .  This implies a strong angular velocity decrease

with time.  For   T0 = 0.01 sec  and    Bsurf % 108 T, we get    2a$0
2 * 2×10– 11 sec– 1 , which is a slow

decay rate.  For   T0 = 1 sec and    Bsurf % 107 T, we get    2a$0
2 * 2×10– 17 sec– 1 , which corresponds

to a period doubling of about 2 billion years !

Next, we want to numerically solve the relativistic version of Newton’s equation for a “ test ”
particle of charge q  and proper mass   m0  moving in the electromagnetic field, taking into account
the gravitational force and the special relativistic effects.  Newton’s equation in any inertial
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reference frame is :
   dp

dt = Ftot , (equ. 24)

where     p = +m0 v  is the relativistic linear momentum of the particle and    Ftot = Fgrav + Fele + Fmagn  is
the total force acting on the particle.  Explicitely :

   Fgrav = – GMm0

r3 r ,    Fele = qE(t, r) ,     Fmagn = q v × B(t, r) . (equ. 25)

The presence of the relativistic factor    + = (1 – v2/c2)– 1/2  in the derivative of equ. 24 may cause a
problem for the numerical integration.  It’s easy to verify that equ. 24 is equivalent to the
following equation (from now on, we will absorb the constant c  into the definition of the
particle’s velocity) :

    +m0c dv
dt = Ftot – (v · Ftot)v , (equ. 26)

Since the goal is to build a 3D model of the particle’s trajectory and to show it in Celestia, it’s
preferable to define the trajectory in the rotating frame centered on the source, while using the
time t  read on the inertial clock.  Thus (remember that        $$ = kc z ) :

     v = v# + k z × r , (equ. 27)

     dv
dt = dv#

dt + 2ck z × v# + ck2 z × (z × r) , (equ. 28)

where  v#  is the particle’s velocity in the rotating frame.  The last two terms of equ. 28 are
associated to the Coriolis and centrifugal forces, respectively.  Next, to allow a proper numerical
integration, we need to normalize the position and time coordinates to dimensionless quantities.
Lets introduce an arbitrary radius R  as length unit (the source radius) and   T = R /c  as time unit,
such that    r* = r /R  and   t* = t /T  are now dimensionless.  Since the velocity was normalised with
the c  constant, it’s already dimensionless :    v " v* .  The equation of motion (equ. 26) then
becomes

     dv*#
dt*

= 1
+ !F* – (v* · F*)v*" – 2k* z × v*# – k*

2 z × (z × r*) (equ. 29)

where     F* = R
m0c2 Ftot = – #grav

1
r*

3 r* + #EM(E* + v* × B*) (equ. 30)

is the normalised (dimensionless) force and    k* = kR " $*  is the dimensionless angular velocity.
Of course, the field components   E*  and   B*  must now be evaluated at time   t* = 0  in the rotating
frame, since they are rigidly rotating with the same angular velocity.  The dimensionless coupling
constants are

   #grav = GM
Rc2 ,    #EM = qR

m0c Bsurf . (equ. 31)

Equs. 29-30 may now be numerically integrated with Mathematica.  For an helium nucleus
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moving around our previous pulsar, with a modest field strength    Bsurf % 100 T, we get :

   #grav * 0.207,   #EM * 1.60 × 105.

For a short period of time, the gravitational force is thus negligible and shouldn’t have any
noticeable effect on the trajectory.  Of course, this may not be true over a long period of time and
we should also take into account the fact that the magnetic field decreases much faster with
distance than gravity (    B % r– 3  and    g % r– 2 ).  For a rotation period of one second, we get

   k * * 2.10 × 10– 4 .  The Coriolis and centrifugal forces shouldn’t have any noticeable effect close
to the pulsar.  This may easily be checked while doing the numerical integration, by turning ON
and OFF the various force components.  The figure below shows an example, from the parameters
given above.  The graduations on the horizontal cartesian axis are defined in normalised units
(one graduation mark equals 100 km).  The particle is moving with an initial velocity of 25%
light speed.
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Figure 1 - Trajectory of an Helium nucleus
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